
OP files and codes on CD

1 Introduction

The CD contains data files and codes required to obtain:

• OP monochromatic opacities for the chemical elements
H, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni;

• Rosseland-mean opacities for any required chemical mixture;

• data for the calculation of radiative accelerations.

All files on the CD for monochromatic opacities are formatted and compressed (gzip).
The OP codes use binary data files (unformatted and not compressed).
Some initial processing is therefore required.

2 Contents of the CD

The CD contains a tar file OPCD.x.y where x and y specify version numbers. Running
tar xf OPCD.x.y

creates a directory OPCD containing this file OPCD.ps, a bash script BASHOP, a makefile and
sub-directories:

• codes, all FORTRAN codes required;

• mono, all monochromatic opacities;

• testin, input files for testing the codes

• testout, outputs from test runs.

3 Installation of data from the CD

Installation can be done in one of three ways.

3.1 Use of makefile

Edit the file makefile and, on line 8, replace ”ifort” with the name of the FORTRAN

compiler to be used.
Enter

make

and then
make data

and then
make test.

1

3.2 Use of BASHOP

Enter
BASHOP

When prompted, enter the name of the FORTRAN compiler to be used.
When prompted, enter Y to continue tests or N to skip tests.

3.3 Manual installation

• extract all files from the tar file and gunzip all .gz files;

• compile the codes unform.f, unforma.f and readop.f and put the .out files produced
in the directory mono;

• in mono, run unform.out which creates unformatted files mzz.ttt and mzz.mesh (for
notation see section 4);

• in mono run unforma.out which creates unformatted files azz.ttt (see section 6);

• compile all other codes in the sub-directory codes and put the .out files in the directory
OPCD;

• make test runs of the codes using the input files in testin;

• compare the output files created with those contained in the sub-directory testout

3.4 Timings and storage requirements

Use of makefile or BASHOP takes about 30 minutes on a 1.9 Hgz PC.
The size of the original tar file is 666 Mb.
The total data size after installation is 1604 Mb.
After installation the data files fmzz.ttt.gz and fazz.ttt can be deleted. The total size is
then reduced to 941 Mb

4 Preliminaries

4.1 Ions

iz=nuclear charge Z.
amamu=atomic mass in atomic mass units.

4.2 Indices for temperatures and electron densities

log(T) = 0.025∗ite
Range for ite: ite=ite1, ite2, ite3

The minimum value for ite is ite1=140 (log(T) = 3.5) and the maximum value is ite2=320
(log(T) = 8.0).
log(Ne) = 0.25∗jne
Range for jne: see section 3.3 below.

2

4.3 Names of mono files

Unformatted files for mono-chromatic opacities have names qzz.ttt where
zz is a two-digit number for iz (zz=01 for H, zz=26 for Fe)
ttt is a three-digit number for ite.
q can be f, m or c: f is a fine mesh; m a medium mesh; and c (rarely used) a coarse mesh. The
intervals are:

q ite3 jne3 ∆log(T) ∆ log(Ne)

f 1 1 0.025 0.25
m 2 2 0.050 0.50
c 4 4 0.100 1.00

The range for log(Ne), (jne1,jne2,jne3), is specified on each file qzz.ttt.
The present CD contains only files for the mesh q=m.

4.4 Mono-chromatic and mean opacities

Notations used in the work of the Opacity Project are given in [2].
u = hν/(kT).
For element k (specified by iz) the mono-chromatic opacity cross-section is σk(u) in atomic
units, a2

0.
The stimulated emission factor, [1 − exp(−u)], is not included.
The total cross-section for a mixture is σ(u) =

∑
k σk(u)fk where fk is the fractional abundance

of k.

4.4.1 The Rosseland mean

The Rosseland mean cross-section is σR,

1

σR

=

∫
∞

0

F (u)

σ(u)[1 − exp(−u)]
du

where

F (u) = [15/(4π4)]u4 exp(−u)/[1 − exp(−u)]2.

All earlier OP calculations were made with ntot equally spaced points for u in a range
umin≤ u ≤umax, and all earlier published opacity data were obtained with umin=10−3, umax=20
and ntot=104.

4.4.2 The Planck mean

The Planck mean cross-section (rarely used) is

σP =
15

π4

∫
∞

0

σ̃(u)
u3

[exp(u) − 1]
du

where σ̃(u) does not include contributions from scattering processes.

3

4.5 Use of the v−mesh

F (u) is small for u small (F (u) ∝ u2) and decreases exponentially for u large. New calculations
have been made using equally-spaced points in the variable

v(u) =

∫
u

0

F (u)

[1 − exp(−u)]
du,

giving

1

σR

=

∫
1

σ
dv.

For a given ntot, use of v gives more points in regions where F (u) is large and hence an
improved frequency resolution (by a factor of about 3 in regions giving dominant contributions
to σR).

All data on the CD are obtained using the v-mesh.

4.6 Units for Rosseland means

The codes compute Rosseland-mean cross-sections σR in atomic units (a2
0).

Astronomers usually use Rosseland-mean opacities per unit mass,

κR = σR/µ,

where µ is the mean atomic weight. As final output the codes give κR in cgs units, cm2 g−1.

4.7 Ionisation equilibria

ne=number of electrons in “target”, as in the R-matrix work: the total number of electrons is
(ne+1); ne= −1 for fully ionised; ne=iz−1 for neutral. The fraction in stage ne is fion(ne).
All stages are included for ne in a range ne1≤ne≤ne2 within which fion(ne)≥testi.
epatom=number of electrons per atom: epatom=iz for fully ionised; epatom=0 for fully neutral.

4.8 Packing

Let the equally-spaced points in v be v(n) = dv × n, and let s(n) be the value of σ(u) at
mesh-point n.
The packed data are stored in arrays y(m) and nx(m) with m=1 to np. Point m corresponds to
n=nx(m), and y(m) is the corresponding value of s(n). If [nx(m+1)-nx(m)]> 1, values of s(n)
for intermediate value of n can be obtained by linear interpolations with fractional errors no
larger than opack.
Data can be un-packed with the following code:-

b=y(1)

mb=1

s(1)=b

do m=2,np

a=b

b=y(m)

ma=mb

4

mb=nx(m)

c=(b-a)/real(mb-ma)

do k=1,mb-ma-1

s(ma+k)=a+k*c

enddo

s(mb)=b

enddo

Packed data require two numbers for each m, nx(m) and y(m). If np>ntot/2 packed data would
take more storage than unpacked data: in that case packing is not used and np is set to 0.

4.9 Test runs

Input files for test runs are given in the sub-directory testin. Running the codes in OPCD, as
in BASHOP, gives output files in OPCD. The tests are satisfactory if those files agree with the
outputs provided in the sub-directory testout.

5 Opacity files and codes

5.1 Files mzz.index

Small formatted files mzz.index give information about all files mzz.ttt held in the same
directory.
Their contents are:

iz, amamu

ite1, ite2. ite3

umin, umax

ncrse, ntot (some data are calculated on a coarse mesh, ncrse points, then in-
terpolated to the ntot mesh)
opack

test1, testp, testl used for testing inclusion of ionisation stages, partition func-
tion and spectrum lines
optw4, optvdw, optwng usually taken to be 1, 1, 1 for:-

• inclusion of the (W/WO)**4 factor in red wing profiles (see [2], section A4)

• inclusion of van der Waals broadening (important only when near-neutral)

• inclusion of line wings even when a line centre is at u>umax.

There are some differences in the files mzz.index for zz=01 and 02.
The files mzz.ttt are provided for ite1= 140, ite2= 320, ite3= 2 (3.0 ≤ log(T) ≤ 8.0)

5.2 Files mzz.mesh

The mesh points in v are v(n) =n∗dv, n=1 to ntot.
The corresponding values of u are u(n) =umesh(n).
umin=umesh(1), umax=umesh(ntot).
mzz.mesh is a binary file. When placed on unit 5 it can be read with the code:-

5

parameter nptot=10000 (can be changed if need be)
dimension umesh(nptot)

read(5)dv,ntot,(umesh(n),n=1,ntot)

5.3 The opacity files mzz.ttt

An unformatted file mzz.ttt on unit 5 can be read with the following code:-

parameter(nptot=10000) (can be changed if need be)

dimension nx(nptot),y(nptot),s(nptot),fion(-1:27)

read(5)iz,ite,amamu,umin,umax,ncrse,nfine,opack,jne1,jne2,jne3

do j=jne1,jne2,jne3

read(5)jne,epatom,oplnck,oross,ne1,ne2,(fion(ne),ne=ne1,ne2)

read(5)np

if(np.eq.0)then

read(5)(s(n),n=1,ntot)

else

read(5)(nx(m),y(m),m=1,np)

enddo

enddo

For unpacking, see section 3.8.

5.4 The code readop.f

Given mzz as input, the code readop.f reads all mzz.ttt files in a given directory. It produces
two files with summary information, mzz.smry and mzz.ion.

mzz.smry gives values of epatom, oplnck and oross where oplnck and oross are Planck- and
Rosseland-mean cross-sections. Placed on unit 5 it can be read with

read(5,*)iz,amamu,umin,umax,ncrse,ntot,opack

read(5,*)ite1,ite2,ite3

do i=ite1,ite2,ite3

read(5,*)ite,jne1,jne2,jne3

do j=jne1,jne2,jne3

read(5,*)jne,epatom,oplnck,oross

enddo

enddo

mzz.ion gives values of fion. Placed on unit 5 it can be read with

dimension fion(-1:27)

read(5,*)ite1,ite2,ite3

do i=ite1,ite2,ite3

read(5,*)ite,jne1,jne2,jne3

do j=jne1,jne2,jne3

6

read(5,*)jne,ne1,ne2,(ne,fion(ne),ne=ne1,ne2)

enddo

enddo

5.5 The code monop.f

The code monop.f extracts a formatted opacity file for selected ite and jne. It prompts for:
the input file name mzz.ttt; the required value of jne; an output file name. The output file
on unit 5 can be read with

dimension fion(-1:27)

read(5,*)iz,ite,amamu,umin,umax,ncrse,ntot,opack

read(5,*)epatom,oplnck,oross

read(5,*)ne1,ne2

read(5,*)(ne,fion(ne),ne=ne1,ne2)

1 read(5,*,end=2)u,s

goto 1

2 stop

where s is the mono-chromatic opacity for frequency point u.

6 Mean opacities for mixtures

NOTE. There are some differences between the present codes for mixtures and versions circu-
lated earlier. Users are advised to read the present documentation.

6.1 The code mixv.f

The code mixv.f differs from an earler code mix3.f in that it uses data on the v−mesh.
It uses files mzz.index, mzz.mesh and mzz.ttt.

Operation
For a specified mixture, the code mixv.f gives values of mass-density and Planck and Rosseland
means on the entire array of (ite,jne) mesh points.
It obtains pressure-corrections to electron scattering, following [6]

Input
The following data are read from unit 5:-

dir, the directory for the input mono files
outfle, name of the output file
X, hydrogen mass-fraction
Z, metals mass fraction
nel, number of elements included
list of values of iz and fa for metals
ite1, ite2, ite3 for range of temperatures to be included.

Note:-

7

• The directory name dir should end with “/”. It may be of any length consistent with
character*100. Leading or trailing blanks are stripped by the code.

• For each value of iz, fa gives the relative abundance of a metal. Normalisation of the fa

is immaterial: re-normalisation is done internally.

Output
For each ite, jne the output file give values of

flrho= log(ρ), ρ = mass density in g cm−3

planck= Planck mean in cm2 g−1

ross= Rosseland mean in cm2 g−1

The output file, placed on unit 5, can be read with the code

character head*70

dimension iz(17),fa(17)

70 format(a70)

read(5,70)head

read(5,*)nel,ite1,ite2,ite3

do n=1,nel

read(5,*)iz(n),fa(n)

enddo

do i=ite1,ite2,ite3

read(5,*)ite,jne1,jne2,jne3

do j=jne1,jne2,jne3

read(5,*)jne,flrho,planck,ross

enddo

enddo

The output from mixv.f has the same form as that from the older code mix3.f.

Test run
Input: in.mixv (s92 mixture (see [2]));
Output: mixv.s92

6.2 The code opfit.f

Operation
opfit.f gives interpolated values of log(κ) where κ is either κP (Planck mean) or κR (Rosseland
mean), in units of cm2 g−2.
Its operation, involving the use of bi-cubic spline interpolations, is described in [1]
It has options for two types of output.

1. Tables of log(κ) in OPAL format (see [8]).

2. Values of log(κ) and its derivatives interpolated to input values of log(T) and log(ρ)

8

Input
The current version of opfit.f differs from earlier versions only in the organisation of input
from unit 5.
The input is: -

name of the file outfle from run of mixv.f
name of the output file
ism for number of passes through a smoothing filter
iop = 0 for Rosseland mean, 1 for Planck mean
iopal = 0 for interpolations, 1 for tables in OPAL format
For iopal=0, a sequence of values of flt= log(T) and flrho= log(ρ)

It is assumed that the input and output files are in the current working directory.

Output
Output is either:-

1. For iopal= 1, a table of opacities in OPAL format.

2. For iopal= 0, a list of values of:-

flt, flrho, G, DGDT,DGDRHO

(G=log(κR), DGDT=∂ log(κR)/∂ log(T); DGDRH=∂ log(κR)/∂ log(ρ)).

Test run
Input: in.opfit (s92 mixture, log(R) = −1.75)
Output: opfit.s92

6.3 The code mx.f

Operation
The code mx.f obtains opacities in a one-step process using bi-cubic interpolations without
splines.

For a function of one variable, 4 points are required for cubic interpolations; for a function of
two variables, 16 points are required. For the first (T, ρ) pair mixture opacities are calculated
on the 16 required values of (ite, jne) and interpolations are made. For the next pair a
different set of 16 points may be required: new calculations are made only for points not used
for the previous pair.
Corrections to scattering are made, as in mixv.f

Input
The input for mx.f is :-

(1) dir, directory for mono files, as in mixv.f.
(2) q, specifying mesh-type (f, m or c)
(3) Names of two files, for output of Rosseland means and of abundances.
(4) nel= number of elements,
(iz(n),fa(n)) for nuclear charges and abundances.
(5) A sequence of values of values of flt= log(T), flrho= log(ρ) and newa.
(6) A new set of abundances is signalled by newa not equal to zero. An entry (4)
with newa 6= 0 is followed by a repeat of step (3)

9

Output
Output is:-

(1) A file written to unit 7 giving values of npoint, flt, flrho, newa, G= log(κR),
DGDT and DFDRHO (npoint is the sequence number for the (T, ρ) point).
(2) A file written to unit 8 only for newa 6= 0, giving values of npoint, nel, flt,
flrho and (iz(n), fa(n),n=1,nel).

The output files are formatted and are self-explanatory.

Test run
Input: in.mx (same case as for opfit.f)
Output: mx.s92.g (unit 7 data)

mx.s92.a (unit 8 data)

6.4 The code mixz.f

If the same metal-mixture is to be used many times, for different stellar models or for different
values of X and Z, it can be convenient to compute and store the monochromatic opacities for
that metal-mixture. That can be done using the code mixz.f.

Operation
Operation of mixz.f is similar to that of mixv.f. The monochromatic opacity files are stored
as a “fictitious” metal: mzz.ttt where zz is a two-digit number larger than 28.

Input

(1) Names of directories: diri for the single-element mono opacities to be used;
diro for the output mixture mono opacities.
(2) izm, the two-digit number mzz
(3) nel, the number of metals in the mixture.
(4) (iz(n), fa(n),n=1,nel), nuclear charges and abundance.
(5) ite1,ite2,ite3, temperature range.

Output
Output files mzz.index, mzz.smry, mzz.ttt in the directory diro.

Test run
in.mixz, the case of the metal mixture a04 defined in [5].
Produces mixture mono opacities m30.ttt.

6.5 The code mxz.f

The code mxz.f is similar to mx.f but uses mixture mono opacities for metals previously
computed with mixz.f. Uses bi-cubic interpolations, not splines.

Input

(1) dir, the directory to be used for mono opacities of H, He and the metal-mixture.
(2) mzz, the label for the metal mixture (character*3).
(3) Names of two output files: one for mean opacities, one for information on X
and z.

10

(4) Values of flt= log(T), flr= log(ρ) and newa

(5) For newa6= 0, values of X and Z.

Output

File on unit 7:

(1) npoint
(2) flt, flrho, newa

(3) G= log(kr), DGDT= ∂ log(κR)/∂ log(T), DGDRH= ∂ log(κR)/∂ log(ρ).

File on unit 8:

npoint, flt, flrho, X and Z.

Test Run
in.mxz, results for the solar model bp04 (see [5]) with X and Z varying continuously in the
radiative interior.

6.6 Choice of mixture codes

The Rosseland mean opacities, G= log(κR), are required for calculations of stellar structures
and the derivatives, DGDT= ∂ log(kr)/∂ log(T) and DGDRHO= ∂ log(κR)/∂ log(ρ), are required
for studies of stellar pulsations.

• mixv provides mixture opacities for all mesh-points on the entire (ite, jne) plane. It
can be convenient if results are subsequently to be computed, using opfit.f, for a large
number of (T, ρ) values and all for the same mixture. The use of spline interpolations
ensures that the derivatives are always continuous. If required, some smoothing can be
done using the parameter ism but with the present data that should rarely, if ever, be
needed.

• mx.f is faster because it requires calculation of mixture opacities only for those (ite,jne)
points required for cubic interpolations. Its use is convenient when results are required
for many different mixtures. However, mx.f does not ensure continuity of the derivatives,
and it provides no facilities for smoothing.

• mxz.f is convenient for cases with X and Z varying with depth.

The test runs of opfit.f and mx.f are for the same case, S92 mix, log(R) = −1.75, log(T) =
6.0 to 7.3. Comparison of the files produced, opfit.s92 and mx.s92.g, shows close agree-
ment for G= log(κR) and DGDT= ∂ log(kr)/∂ log(T) but some lack of smoothness in DGDRHO=
∂ log(kr)/∂ log(ρ) from mx.f: see Figure 1 of [7].

7 Radiative accelerations

NOTE. There are some differences between the present codes for radiative accelerations and
versions circulated earlier. Users are advised to read the present documentation.

The radiative acceleration in a star for element k is (see [3])

grad(k) = (1/c)[µ/µ(k)]FκRγ(k)

where:

11

c is the speed of light;
µ is the mean atomic weight for a mixture, µ(k) the atomic weight for element k;
F is the total radiative flux:

F = πB(Teff)(R?/r)
2;

Teff is the effective temperature;
B(T) = 2(πkBT)4/(15c2h3);
kB is Boltzmann’s constant;
r is the distance from the centre of the star and R? the radius of the star.

γ(k) is the dimensionless quantity

γ(k) =

∫
σmta

k

σ
dv.

σmta
k

(u) is the cross-section for momentum transfer to an atom (see [3]),

σmta
k (u) = σk(u) × [1 − exp(−u)] − ak(u)

where subtraction of ak(u) takes out contributions from electron scattering and from momentum
transfer to electrons.

It is necessary to specify the abundances of all elements contributing to σ. Use is made
of an abundance-multiplier, χ, such that the abundance of the selected element, k, can be
multiplied by χ, leaving the relative abundances of all other elements unchanged.

Derivatives with respect to χ, ∂κR/∂χ and ∂γ/∂χ, can be useful in making interpolations
in χ.

A quantity ζ, defined in section 2.10 of [3], is used for the calculation of diffusion coefficients.

7.1 The files azz.ttt

The cross-sections ak are given in the files azz.ttt, which have structures similar to those of
the mono-opacity files mzz.ttt. They can be read using the code mona.f.

7.2 The code accv.f

The code accv.f has a structure similar to that of mixv.f (see section 4.1). Data are read
from the files mzz.ttt and azz.ttt and values of

ross=κR, rossp=∂κR/∂χ
gam=γ, gamp=∂γ/∂χ

are obtained on the (T,Ne) mesh points.
Input

(1) dir, directory for the files mzz.ttt, azz.ttt
(2) nel, the number of elements
(3) (iz(n), fa(n), n=1,nel), nuclear charges and abundances
(4) iz1, nuclear charge for the selected element
(5) nchi (number of χ values), chilo (lowest value of log(χ)), dchil (the interval
in log(χ)

12

Output
A file acc.zz where zz is a two-digit number for iz1, the selected element.

(1) iz1, ntot, nchi, fmu0, fmu1. The mean atomic weight is fmu=fmu0+fmu1×χ
(2) amacc, fanacc, mass of selected element and its abundance for χ = 1.
(3) chi(l),l=1,nchi
(4) ite1,ite2,ite3, range for temperature index
Start loop on ite:

(5)ite,jn1,jn2,jn3. ite and range for jne
Start loop on jne

(6) jne,epa0,epa1. Number of electrons per atom is epa=
epa0+epa1×χ
(8) zet used for diffusion coefficient
(9) (oross(l),l=1,nchi). Values of κR

(10)(orossp(l),l=1,nchi). Values of ∂κR/∂χ
(11)(gam(l),l=1,nchi). Values of γ
(12)(gamp(l),l=1,nchi). Values of ∂γ/∂χ

(13) nel
(14) (izz(n),fa(n),n=1,nel)

The file output from accv.f can be read with the code readacc.f which includes full docu-
mentation.
Test run
Input: in.accv. s92 mix, iz1=18 (selected element Argon).
Output: acc.18.

7.3 The code accfit.f

The code accfit.f has a structure similar to that of opfit.f (see section 4.2). It uses data
from the file acc.zz output from accv.f (subroutine read1 of accfit.f has comments on
the contents of that file).
Note. The mesh for χ used in accfit.f need not be the same as that used in accv.f (it maybe
convenient to use a finer mesh in accfit.f): interpolations to the χ-values for accfit.f are
made using the derivatives, ∂κR/∂χ and ∂γ/∂χ provided on the output file from accv.f.
input
List of names of 4 files:

(1) file1, the file acc.zz output from accv.f

(2) file2, value of Teff for a stellar model and values of log(T), log(ρ) and (r/R?)
for depth points
(3) file3, values of chilo (lowest value of log(χ)), dchil (interval in log(χ)), mchi
(number of values of log(χ))
(4) file4, name of the output file.

Output

(1) nstar,chilo,dchil,nchi. nstar is number of depth points in a stellar model.
Start loop on depth points n:

13

(2) n,flt,flrho. Depth point and log(T), log(ρ)
(3) (zetout(l),l=1,nchi). ζ used for diffusion coefficient.
(4) (rssout(l),l=1,nchi). log(κR)
(5) (gmmout(l),l=1,nchi). log(γ)
(6) (grdout(l),l=1,nchi). log(grad)

Test run
Input: in.accfit. 92 mixture, iz1=18 (Argon), stellar model Teff = 104

Output: accfit.18

7.4 The code ax.f

Operation of the code ax.f is similar to that of mx.f (see section 4), using bi-cubic interpola-
tions.
Input

(1) dir, name of the directory for the files mzz.ttt and azz.ttt;
(2) nch (the number of χ values), chilo (the smallest value of log(χ), dchil (the
interval in log(χ);
(3) q, mesh type;
(4) names of two output files, to be attached to units 7 and 8;
(4) nel, total number of elements in mixture;
(5) iz1, nuclear charge for selected element;
(6) (iz(n),fa(n),n=1,nel), nuclear charges and abundances;
(7) value of Teff for a stellar model and values of flt, flrho, r/R?, and newa for
each depth point (flt= log(T), flrho= log(ρ))
(8) newa 6= 0 read in step (7) signals new abundances and is followed by a repeat of
step(5)

Output

npoint is the sequence number for depth points, starting npoint= 1.
zet is the quantity ζ which is defined in [3] and is used in the calculation of diffusion
coefficients.

zet

g= log(κR)
gp= d log(κR)/d log(χ)
f= log(γ)
fp= d log(χ)/d log(χ)
grl= log(grad)

(a) Output to unit 7 for each depth point
npoint, flt, flrho, newa

Then for each depth point, as functions of χ(l), l = 1, nch

(zet(l),l=1,nch)

(g(l),l=1,nch)

(gp(l),l=1,nch)

(f(l), l=1,nch)

14

(fp(l),l=1,nch)

(grl(l),l=1,nch)

(b) Output to unit 8 for newa 6= 0
npoint, flt, flrho

(iz(n), fa(n), n=1,nel)

Test run
Input: in.ax. As for accfit
Output: ax.18.g

ax.18.a

7.5 Interpolations of acceleration data

The quantities κR and γ are interpolated in T , ρ and χ. The interpolations are best made
using g = log(κR) and f = log(γ), which are the quantities employed in ax.f. However, in
a few rare circumstances one obtains γ ≤ 0 and log(γ) is no longer a real number. In those
circumstances, the code give output values of f and fp to be equal to −30.

The derivatives with respect to log(χ) are intended to aid subsequent interpolations in χ.
Given y(x) and dy(x)/dx at x = x1 and x2, y(x) can be fitted to a cubic for x1 ≤ x ≤ x2.

7.6 Choice of acceleration codes

The one-step process of using ax.f is adequate for most purposes and is convenient for cases in
which compositions can change as functions of depth in a star. The two-step process, accv.f
and accfit.f can be used to obtain improved accuracy in difficult cases.

The test runs of accfit.f and ax.f are for the same case, Argon in a stellar model with
Teff = 104. Comparisons of results for grad shows some lack of smoothness in values from ax.f

for the extreme case of χ = 0.01: see Figure 2 of [7].

8 Summary on files and codes

8.1 Data files

8.1.1 Compressed formatted data files from tar file

fmzz.ttt.gz Monochromatic opacities for element zz, temperature ttt. 546.7 Mb

fmzz.mesh.gz Information on frequency mesh. 0.44 Mb

fazz.ttt.gz Monochromatic data required for radiative accelerations. 117.7 Mb

8.1.2 Unformatted data files after processing

mzz.ttt 708.2 Mb

mzz.mesh 0.68 Mb

azz.ttt 159.1 Mb

15

8.2 Codes

8.2.1 Codes for mean opacities (see section 6)

mixv, opfit, mx, mxz, mixz

8.2.2 Codes for accelerations (see section 7)

accv, accfit, ax

8.3 Codes for processing data from tar file

• Codes used by BASHOP, unform bash, unforma bash, mesh bash

• Codes not used by BASH, unform, unforma, readop

8.4 Other codes

monop, see section 5.5
readacc, see section 7.2
form and forma create formatted files from unformatted files.

References

References

[1] M.J. Seaton, “Fitting and smoothing of opacity data”, MNRAS, 265, L25, 1993

[2] M.J. Seaton, Yu Yan, D. Mihalas, A.K. Pradhan, “Opacities for stellar envelopes”,
MNRAS, 266, 805, 1994

[3] M.J. Seaton, “Radiative accelerations in stellar envelopes”, MNRAS, 289, 700, 1997

[4] N.R. Badnell, M.J. Seaton, “On the importance of inner-shell transitions for opacity cal-
culations”, J. Phys. B, 36, 4367, 2003

[5] N.R. Badnell, M.A. Bautista, K. Butler, F. Delahaye, C. Mendoza, P. Palmeri, C.J. Zeip-
pen, M.J. Seaton, “Up-dated opacities from the Opacity Project”, MNRAS, submitted

[6] D.B. Boerckner, ApJ, 316, L98, 1987

[7] M.J. Seaton, MNRAS, to be submitted, 2004

[8] F.J. Rogers, C.A. Iglesias, 1992, ApJS , 79, 507

16

